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(Rd, R) −→ (Rd,Γ)

↓ ↓

(Qd
p, R) −→ (Qd

p,Γ)

Rd — Euclidean space, Qd
p— p—adic space, d— space di-

mension, Γ—Grassmann algebra.

As an example of bosonic theory we consider φ4-theory

with the action

H(φ; r, g) = H0(φ;α) +
∫
L(φ(x); r, g) dx, (1)

where

L(φ(x); r, g) = rφ2(x) + gφ4(x).



The Gaussian part is

H0(φ;α) =
c(α)

2

∫
|x− y|−αφ(x)φ(y) dxdy, (2)

while dx is the Lebesgue measure in the Euclidean case and

Haar measure in p-adic case.

As an example of the fermionic thery we consider the

four–component field ψ∗(x) = (ψ1(x), ψ1(x), ψ2(x), ψ2(x))

over Qd
p, whose components are generators of tne Grass-

mann algebra. Let the Gibbs state describing this field be

determined by the Hamiltonian

H(ψ∗;α; r, g) = H0(ψ
∗;α) +

∫
L(ψ∗(x); r, g) dx, (3)

H0(ψ
∗;α) =

c(α)
∫
||x− y||−α (ψ1(x)ψ1(y) + ψ2(x)ψ2(y)) dxdy.

The Lagrangian is

L(ψ∗(x); r, g) = r(ψ1(x)ψ1(x) + ψ2(x)ψ2(x))+

+g(ψ1(x)ψ1(x)ψ2(x)ψ2(x)).
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The Gaussian Hamiltonian is invariant w.r.t.the group

of scaling transformations (Sλ(α)φ)(x) = |λ|d−αφ(λx),

where α ∈ R is the parameter of this group.

The value α = d+2 corresponds to the Laplace operator

in the Euclidean case or its p-adic analog.

In the space of the Hamiltonians the transformation Sλ(α)

acts by merely scaling the coupling constants: Sλ(α)(r, g) =

(|λ|α−dr), |λ|2α−3dg)

The discretization of the field φ is the field ξ over Zd in

the Euclidean case or T dp in the p-adic case such that

ξ(j) =
∫
φ(j + x)χ(x) dx, j ∈ T dp .

Here T dp is a lattice of p-adic fractional vectors (hierarchical

lattice), χ(x) - characteristic function of the ball Zd
p =

{
x ∈ Qd

p : ||x||p ≤ 1
}
.

The discretization ζ of the field (Sp−1(α)φ)(x) is hier-

archical block-spin renormalization group transformation
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over the field ξ,

ζ(j) = (r(α)ξ)(j) = p−α/2
∑

i∈B(j)
ξ(i),

where B(j) = {i ∈ T dp : ||i− p−1j|| ≤ p} are the elemen-

tary blocks in the hierarchical lattice.

Particularly, discretization of the Gaussian field fermionic

field ψ∗ with Hamiltonian

H(ψ∗;α;u, v) = H0(ψ
∗;α) +

∫
L(ψ∗(x);u, v) dx,

is a a discrete fermionic field ξ∗(j) with the Hamiltonian

H ′(ξ∗;α; r, g) = H ′
0(ξ;α) +

∑
j∈T dp

L(ξ∗(j); r, g),

with the Gaussian part

H
′
0(ξ

∗;α) =
∑
i,j
h(i, j;α) ( ξ1(i)ξ1(j) + ξ2(i)ξ2(j)),

h(i, j;α) = c1(α) (1− δi,j) ||i− j||−α + c1(α)δi,j.

Thus, the discretization of the continuum field leads to

the hierarchical model with the same potential L(ξ∗; r, g),
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where the coupling constants r = r(u, v) and g = g(u, v)

of the lattice field depends on the coupling constants u and

v of the continuum model and are given by non-Gaussian

functional integral.

Denote the discretization transformation

(u, v) → (r(u, v), g(u, v))

by P (α).

The transformation of the hierarchical renormalization

group r(α) can be computed explicitly in the space of cou-

pling constants of the hierarchical model and is given by

the mapping

R(α)(r, g) = (r′, g′)

r′ = pα−d
 (r + 1)2 − g

(r + 1)2 − g/pd
(r + 1)− 1

 ,

v′ = p2α−3d

 (r + 1)2 − g

(r + 1)2 − g/pd


2

g,
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Taking into account that r(α) is the discrete version of

scaling transformation Sp−1(α), we have

R(α)P (α) = P (α)S(α).

The mapping S(α) is given by the diagonal matrix whose

eigenvalues are the eigenvalues of the differential of R(α)

at the origin. Hence we can treat the mapping P (α) as

a normalizing transformation to the mapping R(α) at the

zero point an can find functional integral P (α) as a solution

of the classical functional equation

For α > 3d/2 both eigenvalues are more than 1, and

we are in the domain where the classical Poincare theorem

applies. According to to this theorem, the mapping P (α)

can be expanded in a power series in u and v that converges

for sufficiently small u and v provided α is a non-resonance

value. The resonance values in the domain 3d/2 < α < 2d
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are arranged in the discrete series

αk = (
3

2
+

1

2(2k − 1)
)d, k = 1, 2, . . . .

and exactly corresponds to the ultraviolet poles of p-adic

Feynman amplitudes. If d ≤ α ≤ 3d/2, the second eigen-

value is less then 1 and we are in the so-called Siegel do-

main. In that case any rational α is a resonance value

and the convergence of the mapping P (α) requires some

Diophantine condition.

The renormalization procedure can be defined as the

mapping inverse to the normal mapping P (α). We can

restore coupling constants of the continuum theory from

the coupling constants of the discrete model using inverse

map P−1(α). We can embed locallyR(α) in the continuous

semigroup

Rt(α) = P (α)St(α)P−1(α).
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Coefficients of the vector field generating this semigroup

are quantum field β-functions of this theory.

We can prove rigorously that discrete model is well de-

fined for the whole plane of coupling constants and almost

all values of α. But we can prove rigorously that continuum

model is well defined only in some small neighborhood of

trivial (zero) fixed point of renormalization group. In other

words the continuum model is related with the discrete

model as the normal form is related with the map.

For discrete models we also have diagram

(Zd, R) −→ (Zd,Γ)

↓ ↓

(T dp , R) −→ (Qd
p,Γ)

and we discuss in the following right lower corner. We’ll

use also RG–transformation in the space of non–normalized

Grassmann–valued “densities” of single spin “distribution”
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f (ψ∗; c0, c1, c2) = c0+c1(ψ̄1ψ1+ψ̄2ψ2)+c2ψ̄1ψ1ψ̄2ψ2. Par-

ticularly, if c0 ̸= 0, we can write the density f in the expo-

nential form f (ψ∗; c0, c1, c2) = c0 exp{−L(ψ∗; r(c), g(c))},

where c = (c0, c1, c2), r(c) = −c1/c0, g(c) = (c21 −

c0c2)/c
2
0. If c0 = 0, as, for example, in the case of Grass-

mann δ– function δ(ψ∗) = ψ̄1ψ1ψ̄2ψ2, the exponential rep-

resentation is impossible.

The RG–transformation in projective representation have

the following form: R(α)(c0, c1, c2) = (c′0, c
′
1, c

′
2),

c′0 = n2(c2 − 2c1 + c0)
n−2

(c1 − c0)
2 +

1

n
(c0c2 − c21)

 ,

c′1 = λn2(c2−2c1+c0)
n−2

(c1 − c0)(c2 − c1) +
1

n
(c0c2 − c21)

 ,

c′2 = λ2n2(c2 − 2c1 + c0)
n−2

(c2 − c1)
2 +

1

n
(c0c2 − c21)

 .
λ1 = pα−d, n = pd. If c2 − 2c1 + c0 ̸= 0, we can omit

this factor.

The mapping R(α) is correctly defined as the mapping
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from 2-dimensional projective space to itself everywhere

except the point (1,1,1) because R(α)(1, 1, 1) = (0, 0, 0) In

the (r,g)-plane this point is given by (-1,0) and we call this

point the singular point of the RG map.

RG–transformation in (r, g)–space have three finite fixed

points, if α ̸= 1:

r0(α) ≡ 0 g0(α) ≡ 0,

r+(α) =
pd/2 − pα−d

1− pd/2
, g+(α) =

r+(α)(1 + r+(α))
2

1 + r+(α) + p−d/2
, α ̸= d

2
,

r−(α) =
−pd/2 − pα−d

1 + pd/2
, g−(α) =

r−(α)(1 + r−(α))
2

1 + r−(α)− p−d/2
.

For α = d we have a whole line of fixed points {g = 0, r ̸=

−1}.

One can see, that Grassmann Fourier transform trans-

poses the coefficients c0, c1, c2 of the density f (η̄, η; c0, c1, c2):

Fη∗→ξ∗(f (η
∗; c0, c1, c2)) =

=
∫
exp{−(ξ̄1η1+ξ̄2η2+ξ1η̄1+ξ2η̄2)}f (η∗; c0, c1, c2) dη1 dη̄1 dη2 dη̄2 =

10



= f (ξ∗; c2, c1, c0).

It is easy to verify commutation relation

FR(α) = R(2d− α)F.

Besides three finite fixed points there is infinitely far fixed

point, which in c–space is described by the vector (0, 0, 1),

determining the Grassmann δ–function density f (ψ∗; 0, 0, 1) =

ψ̄1ψ1ψ̄2ψ2. It is possible to describe RG-invariant sets and

behavior of stable RG-invariant curves. Let us consider up-

per half-plane (r, g) : g > 0. One can prove the following

Theorem. The part of stable RG–invariant curve γ+,

passing through the “+” FP for α > 3/2 is given by equa-

tion g = h+(r;α), 0 ≤ r <∞, where h+(r;α) is a smooth

monotonically increasing function (in r). For d < α ≤

3d/2 the same equation defines stable RG–invariant curve

for the trivial FP. The part of stable RG–invariant curve
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γ−, passing through the “−”–FP for α > 1 is given by the

equation g = h−(r;α) − ∞ < r < −1, where h−(r;α)

is a smooth monotonically decreasing function. Moreover

h+(r;α) → 0, when r → 0 and h+(r;α) → ∞, when

r → ∞, h−(r;α) → 0, when r → −1, h−(r;α) → ∞,

when r → −∞.

Let Ω+ = {(r, g) : 0 < r < ∞, 0 ≤ g < h+(r;α)},

Ω− = {(r, g) : −∞ < r < −1, 0 ≤ g < h−(r;α)}. We

have proved, that domains Ω+ and Ω− are RG–invariant.

Let Ω = {(r, g) : g > 0} \ (Ω+
∪Ω−) (the domain in the

upper half–plane, bounded by the curve γ+ on the right

and by the curve γ− on the left).

Here we use a computer graphics: every point of the

upper half–plane is colored red (blue), if after some finite

number of RG–iterations this point maps into Ω+(Ω−). To

obtain the global picture we use the same algorithm in c–
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space. We identify the projective c–space with hemisphere

S = {(c0, c1, c2) : c20 + c21 + c22 = 1, c0 ≥ 0}, where the

opposite points of the boundary circle c21 + c22 = 1 must

be identified also. Moreover, to obtain the planar picture,

we use the orthogonal projection of S onto the disk S1 =

{(c1, c2) : c21+ c22 ≤ 1}. The set of points attracting by the

Ω+ is described by the following way. There is a countable

series of nonintersecting subsets C,A(1), A(2), A(3), of the

domain Ω. Let A(0) denote the union of sets C and Ω+. In

turn, every of zones A(i), i = 1, 2, has its own (satellite)

countable series of nonintersecting subsetsA(i, j), j = 1, 2,

and so on. If point belongs to zone A(i1, i2, , ik) and i1 > 1,

then after one RG-iteration it goes to zone A(i1−1, i2, , ik).

If i1 = 1 then it goes to A(i2, i3, , ik). Point from zone

A(i), i = 1, 2, after one RG-iteration goes to A(i− 1).

A(i1, i2, , ik) → A(i1 − 1, i2, , ik) → ...
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→ A(1, i2, , ik) → A(i2, , ik) → ...

→ A(i3, i4, , ik) → ...→ A(0).

Structure of the blue subsets B(i1, i2, , ik) of the points

attracted by left domain Ω− is analogues to the red sub-

sets. All other points of Ω lie on the boundaries of zones

A(i1, i2, , ik) and B(i1, i2, , ik) . These boundaries are in-

variant curves of the map R(α) or its degree. Numerically

it is found that there are cycles of RG-map of the order k for

k < 10 and they lie on the boundaries of sets A(k, k, k, ...)

and B(k, k, k, ...).
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We describe several new interesting phenomena discov-

ered in our model. Some of them can be generalized for the

other corners of our diagram.

1. Interpretation of renormalization procedure as a nor-

mal form to the renormalization group transformation at

zero fixed point. This interpretation is valid for the bosonic

hierarchical model .

2. New branch of fixed points and cycles of renormal-

ization group. It is possible to construct locally the non-

Gaussian branch of fixed points which bifurcates from the

Gaussian for models in all other corners of the diagram.

Will be very interesting to find another branch of fixed

points in the fermionic Euclidean model.

3.Commutative relation between renormalization group

and Fourier transformations F R(α) = R(2d− α)F . This

relation is true for p-adic and Euclidean case .
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4. ”+”-branch of fixed points lies in the lower half-plane

for d < α ≤ 3d/2. As it follows from the property 3 the

non-Gaussian branch of fixed points in the bosonic case is

well defined for α ≤ d/2 and bifurcates from the fixed point

at infinity which corresponds to constant (zero)random field

. But what about d < α ≤ 3d/2?

5. Special role of α = d. It follows from the previous

commutative relation and the fact that all cycles go to the

singular point (-1,0) when α tends to d.

6.Similarity of (α − 3d/2)-expansions for critical expo-

nents in p-adic and Euclidean bosonic models .

7.(α− 3d/2)- and (4− d)-expansions describe the same

non-Gaussian fixed point at dimension d = 3. We have

arguments for that is true in the bosonic hierarchical model

.
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